Главная   >>   Современная теплоэнергетика

Современная теплоэнергетика

СТРАТЕГИЯ ПРОДЛЕНИЯ РЕСУРСА И РЕНОВАЦИИ РАБОТАЮЩИХ ТЭС
12.1. Методы реновации ТЭС и проблемы продления ресурса

«Моральное» и «физическое» старение энергетического оборудования, срок службы которого рассчитан не менее чем на 40 лет, — вполне естественный процесс. Грамотные эксплуатация и техническое обслуживание позволяют обеспечить его нормальное «физическое» состояние в течение этого срока. Тем не менее, несмотря на то, что теплоэнергетика является очень инерционной отраслью промышленности, энергетическое оборудование постоянно совершенствуется. Это приводит к «моральному» старению: устаревший объект имеет существенно больший расход топлива на выработку электроэнергии, худшие показатели надежности, меньшую маневренность, чем усовершенствованные энергоблоки. И тогда появляются две возможности.

Первая возможность — это продолжение эксплуатации при принятой системе ремонтов и технического обслуживания, постепенно сокращая время его работы, т.е. постепенно переводя его из работы в базовой части графика нагрузки сначала в полупиковую, а затем — и в пиковую. Чем значительнее «моральное» старение, тем меньшее время должно работать неэкономичное оборудование (при том же календарном сроке службы в 40 лет). По существу почти таким путем развивалась энергетика СССР в доперестроечные годы советской власти: ежегодно вводилось 8—10 млн кВт новых мощностей, которые частично заменяли списанное не по «физическому», а по «моральному» возрасту оборудование (хотя при этом всегда находились «физические» причины для списания), а частично служили естественному развитию теплоэнергетики. Естественно, что такая схема функционирования теплоэнергетики требует больших средств, мощной энергомашиностроительной и строительной промышленности.

Вторая возможность — это постоянная реновация энергетических объектов, направленная на повышение технико-экономических показателей. Это при том же календарном сроке службы продлевает «активную» жизнь стареющих электростанций, позволяет сократить затраты средств на ввод новых более экономичных мощностей.

Наиболее выгодной является реновация паровых турбин. Усовершенствование проточной части турбины, сокращение паразитных протечек в ней, уменьшение потерь трения в подшипниках и другие мероприятия (см. лекцию 10) сразу же повышают мощность турбины без дополнительных затрат топлива. В большинстве случаев такая реновация позволяет сохранить не только всю инфраструктуру ТЭС (техническое водо- и топливоснабжение, котельную установку и систему регенерации) и системы контроля и автоматики, но и фундамент турбоагрегата. Все это обеспечивает малые затраты на реновацию.

Реновация другого оборудования ТЭС менее эффективна с точки зрения экономичности: как отмечалось выше, экономия теплоты приводит к вдвое меньшей экономии топлива (затрат на выработку электроэнергии). Конечно, при этом могут решаться не менее важные проблемы: уменьшение вредных выбросов в окружающую среду, повышение надежности и т.д.

Абсолютно бессмысленной, а если быть строгим — весьма малоэффективной является замена устаревшего оборудования на идентичное. Его технико-экономические показатели остаются на прежнем уровне, а «физическое» состояние не имеет, как мы увидим ниже, серьезных преимуществ перед списанным оборудованием (хотя, как правило, при заменах именно на него и ссылаются).

Структура генерирующих теплоэнергетических мощностей России в настоящее время уникальна. До конца 70-х годов она развивалась очень динамично и ни в чем не уступала, а во многом даже опережала теплоэнергетику западных стран. Однако, начиная с середины 70-х годов, односторонняя ориентация на преимущественное строительство АЭС и последующее его замораживание, практически полное прекращение вложения инвестиций в теплоэнергетику и энергомашиностроение в последующие годы привели к консервации энергетического оборудования на техническом уровне начала 80-х годов (см. табл. 9.6 выпуска головных образцов турбин). При нормальном развитии нашей теплоэнергетики в эти годы следовало развернуть широкий фронт работ по созданию жаропроч­ных материалов и технологий для энергоблоков нового поколения, и тогда сейчас мы имели бы структуру генерирующих теплоэнергетических мощностей совершенно другого уровня.

Сегодня в России практически все конденсационные теплоэнергетические мощности морально устарели. Исключение составляют 14 энергоблоков 800 МВт и энергоблок 1200 МВт, у которых экономичность находится на уровне 40 %. Несколько лучшая ситуация с теплофикационным оборудованием: энергоблоки 250 и 180 МВт, ТЭС с турбинами ТМЗ (Т-175/185-12,8 и ПТ-135/145-12,8) можно считать вполне современными, хотя и они требуют реновации с целью увеличения выработки электроэнергии на тепловом потреблении.

Таким образом, подавляющая часть парка генерирующих мощностей (примерно 100—110 млн кВт) требует либо замены, либо реновации. Это задача гигантского масштаба и в условиях, когда нет инвестиций для реализации очевидного проекта энергоблока 525 МВт на ССКП на Мордовской ГРЭС (см. лекцию 11), говорить о массовой перестройке теплоэнергетики в ближайшие годы не приходится.

Даже при самой оптимистичной реализации планов по вводу высоко­экономичных ПГУ, работающих на природном газе, и пылеугольных энергоблоков ССКП нового поколения, потребуется обеспечить работу значительного парка энергоблоков с малоэкономичным морально устаревшим оборудованием после выработки им и расчетного, и даже паркового ресурса. В связи с этим важно понять, что происходит с металлом наиболее нагруженных элементов турбин, котлов, паропроводов и существуют ли «физические» пределы их несущей способности, после чего происходит их неизбежное разрушение. Этот вопрос рассмотрим в следующем разделе, а сейчас вполне определенно подчеркнем следующее: даже если «физические» возможности металла указанных элементов допускают весьма существенное продление сроков эксплуатации (а мы увидим, что так оно и есть), продление ресурса — это весьма дорогое и вынужденное мероприятие. Ежесекундные потери, связанные с пережогом топлива, необходимость частых и дорогостоящих инспекций (с потерями от недовыработки электроэнергии), повышенные затраты на ремонт и замену изношенных элементов, необходимость в большом количестве ремонтного персонала, — все эти недостатки могут быть оправданы только тем, что убытки потребителей электроэнергии при ее недопоставке будут еще большими.

Очень часто даже от работников РАО «ЕЭС России» можно услышать мнение о дешевизне мероприятий по продлению ресурса. С точки зрения капитальных вложений это действительно так, однако с учетом пережога топлива и повышения его стоимости в перспективе, продление ресурса без реновации может быть оправдано лишь в отдельных конкретных случаях.