Главная   >>   Современная электроэнергетика

Современная электроэнергетика

10.6. Провода для воздушных линий электропередачи

Для воздушных линий электропередачи на напряжение 35—1150 кВ применяются неизолированные алюминиевые и сталеалюминиевые провода. Основные конструкции этих проводов показаны на рис. 10.10. Алюминиевые и сталеалюминиевые провода являются многопроволочными, причем алюминиевые проволоки определяют электрические характеристики провода, а стальной сердечник обеспечивает механические характеристики. Многопроволочный сердечник состоит из стальных оцинкованных проволок и покрывается слоем нейтральной смазки.

Чем больше наружный диаметр провода, тем выше потери на коронный разряд. Поэтому для напряжений, превышающих 220 кВ, приходится выбирать провода большего сечения по сравнению с оптимальным, что несколько ухудшает экономические показатели ЛЭП. Для уменьшения потерь при передаче электроэнергии в ЛЭП обычно используется расщепление фаз, которое не связано с изменением конструкции проводов.

При воздействии агрессивной атмосферы или атмосферы с повышенной влажностью возможна интенсивная коррозия алюминиевых и стале-алюминиевых проводов, что приводит к выходу из строя ЛЭП за 4—8 лет. Поэтому для повышения срока службы проводов в таких условиях эксплуатации на поверхность стального сердечника и по повивам алюминиевой проволоки наносится специальная защитная смазка, обычно на основе углеродных материалов.

Кроме алюминиевых и сталеалюминиевых проводов в ЛЭП используются также провода из сплавов алюминия, которые при достаточно высокой электрической проводимости имеют высокие механические характеристики, позволяющие в ряде сплавов отказаться от применения стального сердечника и уменьшить массу проводов.

Алюминиевые сплавы на основе Al-Mg-Si достаточно широко применяются за рубежом для изготовления проводов для воздушных ЛЭП. Химический состав сплавов и их свойства в стандартах разных стран различаются незначительно. За базовые сплавы принимаются обычно сплавы по стандарту США, имеющие цифровое обозначение 6101 и 6201. В отечественной практике используются провода из упрочненного сплава сечением до 185 мм2 двух модификаций: провода из нетермообработанного сплава с пониженным уровнем прочностных характеристик и провода из термообработанного сплава, разрывная прочность и электрическое сопротивление которых соответствуют требованиям стандарта Международной электротехнической комиссии. Однако применение их в отечественной практике ограничено. В то же время сравнение характеристик сталеалюминиевых проводов и проводов из алюминиевого сплава свидетельствует в пользу последних. Так, если сравнивать сталеалюминиевые провода с номинальным сечением по алюминию 525 мм2 и заменяющего его аналога — провода из упрочненного алюминиевого сплава сечением 585 мм2, то провод из сплава алюминия имеет массу на 20 % меньше, разрывное усиление на 18 % выше и электрическое сопротивление на 5 % ниже. При этом экономическая эффективность достигается за счет увеличения длины пролетов и уменьшения количества опор на ЛЭП.

Самонесущие изолированные провода (СИП) применяются для воздушных распределительных сетей низкого и среднего напряжения взамен неизолированных алюминиевых и сталеалюминиевых проводов. Базовая конструкция провода на низкое напряжение: пучок скрученных изолированных светостабилизированным сшитым ПЭ фазных проводников с несущим нулевым проводом и проводом меньшего сечения для уличного освещения (рис. 10.11). Несущий нулевой провод выполняется из алюминиевого сплава на базе Al-Mg-Si с разрывной прочностью на единицу сечения не менее 295 МПа (для сравнения — разрывная прочность алюминия около 165 МПа). Провод подвешивается на опорах ЛЭП. СИП на напряжения 10—20 кВ имеет токопроводящую жилу из алюминиевого сплава и изоляцию из светостабилизированного сшитого ПЭ.

Эксплуатационные преимущества изолированных самонесущих проводов по сравнению с неизолированными:

  • повышенная надежность в эксплуатации за счет значительно меньшей вероятности короткого замыкания (проводники фаз изолированы);
  • стойкость к атмосферным воздействиям (гололед, ветровые нагрузки);
  • снижение индуктивного сопротивления в 3,5 раза, что позволяет сократить потери электроэнергии и увеличивает токи нагрузки;
  • защита зеленых насаждений (не требуется вырубки деревьев и кустарников по трассе прокладки).