Современная электроэнергетика
Главная   >>   Современная электроэнергетика

Современная электроэнергетика

5.5. Защитные и токоограничивающие аппараты

Для защиты изоляционных конструкций РУ от грозовых и коммутационных перенапряжений применяются разрядники и нелинейные ограничители перенапряжения (ОПН). Изменение напряжения и тока сопровождения на разряднике при его пробое (срабатывании) показано на рис. 5.17, а.

Основными элементами вентильных разрядников являются искровые промежутки, последовательно соединенные с резистором, имеющим нелинейную вольт-амперную характеристику (ВАХ). В некоторых разрядниках параллельно искровым промежуткам 2, 3 присоединяются шунтирующие резисторы 1 (линейные) и конденсаторы, дающие возможность управлять распределением напряжений различной длительности по искровым промежуткам (рис. 5.17, б).

На рис. 5.18 представлен вентильный разрядник на напряжение 33 кВ, состоящий из фарфоровой покрышки 1, колонки нелинейных резисторов из вилита 2 и блока последовательно соединенных искровых промежутков 3.

Конструкция ОПН показана на рис. 5.19. Основными элементами ОПН являются фарфоровый корпус 2, фланцы 4, имеющие устройство 3, обеспечивающее герметичность, наружный тороидальный экран 6 с держателями 5, обеспечивающий выравнивание распределения напряжения по варисторам 7. Варисторы имеют внутреннюю полость 1, служащую для сброса избыточного давления при аварийном режиме через клапан взрывобезопасности 3. Тепловая прослойка 8, передающая избыток теплоты от варисторов на корпус, одновременно используется для крепления варисторов 7. В последнее время для изготовления корпусов ОПН стали применять полимерные материалы, например стеклопластик, что позволяет существенно снизить массу аппаратов и упростить конструкцию ОПН.

Одним из основных недостатков вентильных разрядников является высокое значение коэффициента нелинейности материалов (тервита и вилита) a = (0,2—0,4), а также нестабильность напряжений пробоя. Поэтому значительный прогресс был достигнут после разработки новых оксидно-цинковых варисторов с коэффициентом нелинейности a = 0,02. Это позволило разработать аппараты защиты без искровых промежутков. При рабочем напряжении токи через варисторы составляют миллиамперы, а при перенапряжениях соответственно сотни и тысячи ампер.

Ограничитель подсоединен к сети в течение всего срока службы. Поэтому через варисторы непрерывно протекает ток. Ограничитель сохраняет работоспособность до тех пор, пока воздействием рабочего напряжения и импульсов перенапряжений активная составляющая тока не превысит некоторого критического значения, при котором нарушается тепловое равновесие аппарата.

Поглощение ограничителем энергии из сети предшествует повышению перенапряжения. Кратность ограничения перенапряжений ОПН имеет порядок 1,75 (для коммутационных) и соответственно 2,42—1,8 (для грозовых), что значительно ниже, чем для вентильных разрядников, и, самое главное, обеспечивается стабильность этого коэффициента.

Токоограничивающим реактором называется электрический аппарат, выполненный в виде катушки неизменной индуктивности, предназначенный для ограничения токов КЗ и поддержания напряжения на шинах РУ в аварийном режиме. Откуда следует, что при возникновении КЗ на одной из отходящих линий низкого напряжения ток КЗ будет ограничиваться реактивными сопротивлениями генератора Хг и реактора Xт:

Обычно реактивное сопротивление реактора выражают в процентах:

Ток генератора много больше номинального тока отходящих линий, при этом Xр >> Х г. Таким образом, реально реактивное сопротивление реактора ограничивает уровень ожидаемого тока КЗ. Использование реактора позволяет выбрать коммутационную аппаратуру на более легкие режимы по номинальному току отключения и токам термической и динамической стойкости. Как известно, в номинальном режиме на реакторе будут наблюдаться постоянные потери напряжения. Поэтому увеличение индуктивного сопротивления реактора Xр% приводит к росту дополнительных потерь напряжения на нем. Увеличение индуктивности позволит более глубоко ограничить ток КЗ и использовать в сети более простые и дешевые аппараты. Используя критерий минимума затрат для РУ в целом, можно выбрать реактор с оптимальными электрическими параметрами.

Для обеспечения линейности вольт-амперных характеристик реактора применяются конструкции без ферромагнитного магнитопровода. Наиболее просты и дешевы конструкции сухих бетонных реакторов. На рис. 5.20 представлена конструкция однофазного бетонного реактора. Многожильный кабель 1 (медный или алюминиевый) при изготовлении заливается в специальные формы и крепится при помощи бетонных стоек-колонн 2. Основания колонн крепятся к опорным изоляторам 3. Для повышения электрической прочности после отвердения бетон пропитывается специальным лаком. Между витками катушки реактора имеются значительные расстояния, которые необходимы для снижения электродинамического усилия при КЗ и охлаждения реактора в номинальном режиме. Отдельные модули (фазные) реакторов могут располагаться вертикально и горизонтально, но обязательно в закрытых помещениях. К недостаткам реакторов кроме больших массы и габаритных размеров, следует отнести и создание значительных магнитных полей рассеяния.