Современная электроэнергетика
Главная   >>   Современная электроэнергетика

Современная электроэнергетика

3.4. Системы возбуждения генераторов

Магнитное поле ротора, необходимое для создания электродвижущей силы обмотки статора любого генератора, создается постоянным током, протекающим по обмотке возбуждения (ОВ) (см. рис. 3.1). Для питания ОВ предназначена система возбуждения, в значительной степени определяющая надежность работы синхронных генераторов. В связи с этим к системе возбуждения предъявляются следующие основные требования:

1) надежное питание постоянным током ОВ в любых режимах, в том числе при авариях в энергосистемах;
2) устойчивое регулирование тока возбуждения при изменении нагрузки генератора;
3) необходимое быстродействие;
4) форсировка возбуждения, т.е. обеспечение быстрого нарастания тока возбуждения, примерно до двукратного значения;
5) быстрое гашение магнитного поля возбуждения при оперативных отключениях генератора от сети.

В зависимости от источника энергии, используемого для питания ОВ системы возбуждения разделяются на группы:

1) электромашинное возбуждение с использованием генератора постоянного тока;
2) электромашинное возбуждение с использованием генератора переменного тока с преобразованием этого тока в постоянный;
3) самовозбуждение путем преобразования части электрической энергии переменного тока генератора в энергию постоянного тока возбуждения.

Электромашинные системы возбуждения, где источником энергии является генератор постоянного тока, т.е. возбудитель, использовались в течение длительного времени для большинства генераторов. Обычно они находились на одном валу с генератором и приводились во вращение той же турбиной, что и сам генератор. Такая система называется прямой. В случае, если возбудитель приводится во вращение отдельным двигателем, то систему принято называть косвенной. В отечественном генераторостроении применяют, как правило, прямую систему возбуждения, имеющую меньшую стоимость и большую надежность.

Увеличение мощностей турбо- и гидрогенераторов, а следовательно, необходимых мощностей возбудителей инициировало необходимость замены генераторов постоянного тока электромашинными системами возбуждения с применением генераторов переменного тока, не имеющих никаких ограничений по мощности. Для преобразования переменного тока в постоянный ранее использовались ртутные выпрямители, которые в дальнейшем уступили место управляемым и неуправляемым полупроводниковым преобразователям на основе диодов, тиристоров, транзисторов. Полупроводниковые преобразователи обладают большей надежностью, а в целом система с генераторами переменного тока большим быстродействием, позволяющим осуществить высокий уровень возбуждения (до четырехкратного номинального напряжения возбуждения при постоянной времени системы возбуждения менее двух сотых секунды). Широкое внедрение систем возбуждения с управляемыми преобразователями было осуществлено впервые в мире в нашей стране. В дальнейшем переход на такие системы был осуществлен и за рубежом.

Мощность генераторов для системы возбуждения составляет 0,5—2 % полной мощности главного генератора. Например, для турбогенератора 320 МВт она достигает 2 МВт, для 800 МВт — 6 МВт и т.д., токи возбуждения — тысяч ампер (для мощных турбогенераторов 5—8 тыс. А). Это обстоятельство создает большие трудности при организации токоподвода к обмотке возбуждения с помощью скользящего контакта между контактными кольцами ротора и щетками. Поэтому для ряда генераторов была успешно применена бесщеточная система возбуждения, где постоянный ток подается непосредственно с вращающегося ротора возбудителя на обмотку возбуждения главного генератора. Переменное напряжение обмотки возбуждения преобразуется в постоянное выпрямительным мостом, установленным на роторе. Силовые роторные вентили должны обладать повышенной механической прочностью и вибростойкостью.

Преимуществом систем самовозбуждения является то, что они не имеют электромашинного возбудителя — генератора. Для питания обмотки ротора главного генератора используется часть энергии статора главного генератора. В результате надежность системы повышается, стоимость ее уменьшается, сокращается длина генератора. Начальное возбуждение генератора осуществляется за счет остаточного намагничивания машины или током от постороннего источника.

В состав системы возбуждения входит автоматический регулятор возбуждения (АРВ). Он осуществляет поддержание заданного уровня напряжения и устойчивость работы генератора при колебаниях напряжения в электроэнергетической системе при изменении значения и характера нагрузок, отключении электростанции, линии электропередачи, коротких замыканиях. Основные требования, предъявляемые к АРВ, — это быстродействие, устойчивость регулирования, обеспечение форсировки возбуждения при резких снижениях напряжения в сети, что чревато потерей статической и динамической устойчивости генераторов.

Ввод в эксплуатацию дальних электропередач, объединение отдельных энергосистем в единую сеть, рост мощностей генераторов потребовали существенного повышения их динамической и статической устойчивости. Были созданы АРВ сильного действия (АРВ СД), реагирующие не только на отклонение параметров режима генератора (напряжение, ток, частота), но и на скорость их изменения.

При возникновении аварийных режимов, коротких замыканий в генераторе, шинопроводе или трансформаторе, после внезапного отключения генератора необходимо быстро уменьшить магнитное поле обмотки возбуждения генератора. Эта операция носит название гашение поля и осуществляется специальным автоматом гашения поля (АГП). К устройству АГП предъявляются два основных, иногда противоречащих друг другу, требования: время гашения поля должно быть возможно меньшим, а возникающее при гашении индуктированное перенапряжение в обмотке ротора не должно превосходить допустимых значений.