Очерки по истории электротехники
Главная   >>   Очерки по истории электротехники

Очерки по истории электротехники

2.6. О «сходстве и подобии» электрических и магнитных явлений. Новые открытия. Закон Кулона

Постепенно электрические эксперименты перестают быть модными развлечениями и все более превращаются в мощное средство познания неизведанных тайн природы.

Мировую известность приобрел трактат петербургского академика Франца Ульриха Теодора Эпинуса (1724—1802 гт.) «Опыты теории электричества и магнетизма», изданный в Петербурге в 1759 г. Эпинус впервые указал на связь между электрическими и магнитными явлениями. К этому выводу он пришел в результате многочисленных экспериментов с электризацией кристаллов тур малина при их нагревании и охлаждении (1752 г.). Это явление позднее получило название пироэлектричества. Образование разноименных зарядов на противоположных концах кристаллов он уподоблял двум противоположным полюсам магнита. В своей речи на общем собрании Академии наук в 1758 г. Эпинус говорил не только о некоем союзе и сходстве магнитной и электрической силы, но и сокровенном обеих сил точном подобии». И будто испугавшись

дерзости своих мыслей о «подобии» этих различных (по утверждениям его многих современников) явлений, он в конце речи добавил: «Но я таким образом заключать не отважусь». И не удивительно, прошло почти три четверти столетия, пока «сходство и подобие» электрических и магнитных явлений было убедительно доказано М. Фарадеем.

Независимо от Эпинуса итальянский ученый Д. Беккарня (1716— 1781 гг.) в 1758 г. выдвинул гипотезу о существовании тесной связи между «циркуляцией электрического флюида и магнетизмом».

Ф. Эпинусу принадлежит открытие явления электростатической индукции. Он впервые отверг утверждение Франклина об особой роли стекла в лейденской банке и применил плоский конденсатор с воздушной прослойкой. Он правильно утверждал, что чем меньше расстояние между обкладками банки и чем больше их поверхность, тем выше «степень электричества».

Предполагая, что «сила электрического потрясения» зависит главным образом от степени «сгущения электрической жидкости», Эпинус близко подошел к понятиям о потенциале и емкости. Эпинусом были поставлены эксперименты, воспроизводящие явления, имеющие место в приборе, названном позднее «электрофором». Изобретение электрофора обычно приписывают А. Вольта, но сам Вольта отмечал, что Эпинус осуществил на практике идею элекрофора, «хотя и не сконструировал законченного лабораторного прибора».

В своем сочинении Эпинус предложил свою теорию электрических и магнитных явлений, которая основывалась на существовании электрической и магнитной жидкостей. Заслуживает внимания его попытка впервые применить математические расчеты для характеристики взаимодействия заряженных тел. При этом он задолго до Кулона высказал предположение о том, что силы взаимодействия электрических и магнитных зарядов изменяются обратно пропорционально квадратам расстояния между ними. Эпинусом также была высказана правильная мысль о сохранении количества электричества. Для увеличения «количества электрической материи» в одном теле ее «неизбежно нужно взять вне его и, следовательно, уменьшить ее в каком-либо другом теле»:

Говоря о возникновении понятий потенциала ("напряжение") и емкости, необходимо отметить большой вклад выдающегося итальянского физика Алессандро Вольта (1745—1827 гг.). Его по праву можно назвать основателем электрической метрологии. В ряде своих работ (1778—1782 гг.) он четко формулирует количественные зависимости между электрическим зарядом, емкостью и напряжением: «...когда емкость больше, то данное количество электричества вызывает меньшее напряжение ... емкость и электрическое действие, или напряжение, находятся в обратном отношении»*. Причем под термином «напряжение» он понимает интенсивность или «усилие, производимое каждой точкой наэлектризованного тела». А. Вольта создал более совершенные электрофоры и электроскопы, в частности, конденсаторный электроскоп.

Среди ряда теорий электричества, разработанных в XVIII в., заслуживает внимания теория петербургского академика Л. Эйлера (1707—1783 гг.) — одного из выдающихся ученых своего времени.

Подобно М. В. Ломоносову Эйлер отрицал существование особой электрической материи и считал, что электрические явления обусловлены разрежением и сгущением эфира. Эта теория является дальнейшим развитием идей Ломоносова и приближается « эфирным теориям электричества XIX в. Эйлером описана также > одна из конструкций электростатической машины (1761 г.), от которой заряжалась лейденская банка.

Углубление исследований в области статического электричест ва не могло не привести к опровержению ряда ошибочных выво дов, сделанных физиками в начальный период изучения этих явлений. Одним из таких ошибочных выводов было утверждение! невозможности электризации металлов трением.

В конце XVIII в. ряд европейских ученых, а также выдающий а русский физик и электротехник академик В. В. Петров приходят! заключению о том, что металлы могут быть наэлектризованы по средством трения при условии их тщательной изоляции. Наиболее убедительно это было доказано В. В. Петровым в его труде «Новые электрические опыты», изданном в 1804 г. Он показал, что особенно эффективным способом электризации металлов является «стегание» их выделанным мехом некоторых животных. И также разработан ряд новых методов электризации различных тел. В. В. Петров правильно установил влияние размеров, температуры и состояния поверхности тел, а также влажности окружающего воздуха на интенсивность электризации. Эти выводы В. В. Петрова, а также его указание на неустойчивость явления электризации тел подтверждены современными исследованиями.

Заслуживает внимания утверждение Петрова о возможности электризации человеческого тела посредством «стегания» — это позволяло врачам (он подчеркивает это в своем труде) применять электролечение без электростатической машины, которую не всякий медик мог иметь в своем распоряжении.

Результат опытов по электризации тканей, осуществленных Петровым, привели его к созданию электрофора оригинальной конструкции, в котором основание из смолы было заменено тщательно просушенной «мягкой байкой», сложенной в четыре слоя. Ученый провел целую серию новых экспериментов по электризации ртути и других веществ посредством «трясения» их в стеклянных сосудах.

В. В. Петров подверг специальному изучению явления статического электричества в разряженном воздухе и в атмосфере различных газов. С этой целью он построил совершенно оригинальную электростатическую машину (рис, 2.7), помещавшуюся под колоколом воздушного насоса. Установленный там же термометр фиксировал интенсивность электрических разрядов при разных температурах.

 

В частности Петров убедительно подтвердил возрастание электрической проводимости воздуха при его нагревании, обнаружил образование окислов азота при электрических разрядах в воздухе.

В последней четверти XVIII в. все более начинает проявляться новый образ мышления ученых, исследующих электрические и магнитные явления. Сделанные еще в 40—50 гг. М. В. Ломоносовым и Г. В. Рихманом первые шаги от качественных наблюдений к установлению количественных закономерностей, вызывают все больший интерес. Возможность перехода к количественным исследованиям обуславливалась как успехами математики, так и совершенствованием измерительных устройств.

Как уже отмечалось, ф. Эпинус пытался аналитически определить силу взаимодействия электрических зарядов. Вслед за ним английский ученый Генри Кавендиш (1731—1810 гг.) в своей статье (1771 г.) указывает на то, что притяжение двух электрических зарядов обратно пропорционально расстоянию в степени меньше третьей. В 1766 г. англичанин Т. Лейн изобрел новый тип электрометра, представлявшего собой разрядник с градуированием расстояния между электродами; с помощью такого электрометра можно было по расстоянию, при котором происходил пробой, определять «напряжение» электростатической машины. Известны также попытки физиков найти закон магнитного действия.

Важнейшим шагом в развитии количественных исследований электрических и магнитных явлений было установление закона о силе взаимодействия между наэлектризованными телами и магнитными полюсами. Этими вопросами занимались многие ученые (Эпинус, Кавендиш и др.), высказавшие предположение о «законе обратных квадратов».

Но наибольших успехов сумел достичь французский военный инженер Шарль О постен Кулон (1736—1806 гг.). В течение нескольких лет он проводил эксперименты с помощью прибора, который вначале был предназначен для изучения законов закручивания шелковых и волосяных нитей, а также металлических проволок.

В 1785 г. Кулон установил, что «сила кручения пропорциональна углу закручивания». Он решил использовать этот прибор для измерения «малых электрических и магнитных сил». Прибор позволял измерять «мельчайшие степени силы», и Кулон назвал его «крутильными весами» (рис. 2.8).

В результате многочисленных экспериментов он установил, что сила взаимодействия наэлектризованных тел пропорциональна «количеству электричества» (этот термин был им впервые введен в науку) заряженных тел и обратно пропорциональна квадрату расстояния между ними.

Так был открыт Кулоном знаменитый закон, носящий его имя. Этот закон Кулон распространил и на взаимодействие магнитных полюсов.

Кулоном аналитически и экспериментально было доказано, что электричество распространяется по поверхности проводника, а также равномерно распределяется по поверхности изолированной проводящей сферы.

Исследования Кулона способствовали применению математического анализа в теории электричества и магнетизма, распространению математического понятия потенциала (ранее введенного в механику) на электрическое и магнитное поля.

 



ремонт стиральных машин на дому Самара, lg ardo.