Энергосбережение на промышленных предприятиях
Глава 3. Теоретические основы энергосбережения
Конечное потребление энергии человеком, обществом или промышленным производством (тепло, свет, электричество, звук, движение и т.п.) всегда соответствовало уровню развития цивилизации. При этом добыча и производство энергоресурсов существенно, в несколько раз, превышает конечное потребление энергии. Это объясняется не столько недостатками существующих энергетических технологий, сколько фундаментальными ограничениями, связанными с самой природой процессов преобразования энергии. Основные стадии преобразования энергии органического топлива в электроэнергию следующие. Химическая энергия топлива в процессе горения преобразуется во внутреннюю энергию водяного пара, затем в процессе расширения пара его внутренняя энергия преобразуется в механическую энергию вращения ротора турбогенератора. Далее полученная в турбогенераторе электрическая энергия после трансформации и передачи по сетям будет потреблена у потребителя.
Такие стадии присутствуют во многих типах энергетических установок. Закономерности преобразования энергии являются предметом термодинамики. Эта область науки сложилась еще в XIX веке. Но основные ее законы составляют фундаментальные основы современных научных знаний. Для количественного сравнения различных способов преобразования энергии простейшим критерием служит коэффициент полезного действия , рассчитанной по формуле
где W - совершаемая полезная работа;
Е - затрачиваемая энергия.
Коэффициент полезного действия действующих энергетических установок отличается весьма значительно. Так КПД тепловой конденсационной электростанции (КЭС) составляет около 40 %, теплоэлектроцентрали (ТЭЦ) - 60 %, а дизельной электростанции ДЭС – 20 %.
Простейшей моделью энергетической установки может служить схема, представленная на рис. 3.1.
В такой простейшей системе совершаются три основных процесса над рабочим телом: испарение, расширение, конденсация.
Стрелки, связывающие эти три процесса, показывают направление движения рабочего тела. Подводимая к системе энергия в виде сжигаемого топлива расходуется на испарение рабочего тела (воды). В точке В рабочим телом является пар с высокими температурой и давлением. Затем рабочее тело расширяется, вызывая вращение ротора турбогенератора, производя электрическую энергию.
В точке С рабочее тело представляет собой пар, который имеет низкую температуру и очень низкое давление. В конденсаторе рабочее тело вновь переводится в жидкое состояние. Энергия, которую необходимо вывести из системы для конденсации пара, обычно отбирается охлаждающей циркуляционной водой. Возврат рабочего тела в парогенератор осуществляется питательным насосом. Количество подводимой к системе энергии в сумме равно количеству отводимой энергии и совершаемой работы. Для изменения агрегатного состояния рабочего тела, его испарения или конденсации необходимо подвести или отвести определенное количество энергии. А рабочее тело обладает свойством запасать энергию. Если изменение внутреннего состояния рабочего тела характеризовать количеством запасенной им энергии DЕ, то математическое выражение первого начала термодинамики - закона сохранения энергии для системы, которая обменивается с внешней средой энергией в форме теплоты и работы W, выражается так:
Q = DЕ + W,
где Q - теплота системы.
Коэффициент полезного действия энергетической установки всегда меньше единицы. При h = 1 вся подводимая к системе энергия превращается в работу. Практически получить такой коэффициент полезного действия можно, но только не в циклическом процессе. Примером может служить изотермическое расширение газа. Оно может идти лишь до того момента, пока давление не станет равным атмосферному. Но циклическую последовательность процессов, для которой Q=W, DЕ=О осуществить невозможно, хотя первому закону термодинамики это не противоречит. Это противоречит второму началу термодинамики: невозможно построить периодически действующую машину, все действие которой сводилось бы только к превращению теплоты, получаемой от источника, в работу.
Отвод определенного количества теплоты от рабочего тела к холодному источнику является необходимым условием осуществления цикла теплового двигателя. Работа в цикле равна разности подводимого и отводимого количества теплоты:
W = Q1 - Q2,
Максимально возможный коэффициент полезного действия цикла энергетической установки в идеализированном случае определяется соотношением температур горячего Т1 и холодного Т2 источников:
Такая идеальная энергетическая установка носит название тепловой машины Карно. Работает эта машина следующим образом:
- рабочее тело адиабатически сжимается, температура растет до Т1;
- рабочее тело изотермически расширяется, совершая работу W;
- рабочее тело адиабатически расширяется пока температура не снизится до Т2;
- рабочее тело изотермически сжимается до тех пор, пока его внутренняя энергия не примет первоначальное значение, сбрасывая в холодный источник DЕ.
Известно, что никакая другая машина не может иметь больший коэффициент полезного действия при тех же диапазонах температур. Значения h = 100 % соответствует условию: Т2 = 0, что принципиально не может быть достигнуто.
Реальные термодинамические циклы, используемые в реальных тепловых двигателях, - двигателях внутреннего сгорания (циклы Отто, Дизеля, Ванкеля), паровые и газовые турбины (циклы Ренкина, Брайтона), холодильные машины и тепловые насосы могут весьма существенно отличаться своими массогабаритными характеристиками, экологическими и другими качественными свойствами. Однако экономические характеристики показывают степень их приближения к идеалу.
Таким образом, процессы преобразования энергии всегда связаны с ее потерями. При этом значительная часть потерь определяется фундаментальными законами природы и, по сути, определяет технологический расход энергии в процессах ее преобразования. Другая часть потерь энергии связана с отклонениями реальных технологических процессов от идеала. Наконец, оставшаяся часть потерь определяется неправильной работой технологических установок, неверной настройкой технологического режима, холостыми пробегами оборудования, неэкономичной загрузкой или плохой изоляцией. Именно в этой последней части следует в первую очередь искать наиболее эффективные решения по энергосбережению.
Применительно к электрической части энергетической установки, комплекса или системы повышение эффективности использования энергии чаще всего состоит в снижении потерь электроэнергии. Если на участке сети напряжение U с активным сопротивлением R протекает активная мощность P и реактивная Q, то потери электроэнергии DА определяются так:
,где - время максимальных потерь.
Сразу становятся очевидными меры по снижению потерь в сетях:
- компенсация реактивной мощности;
- повышение уровня напряжения сети;
- увеличение сечения проводов для снижения сопротивления;
- уменьшение дальности передачи - снижение сопротивления;
- снижение времени потерь;
- снижение максимума нагрузки.
Наиболее полное представление о состоянии добычи, производство, передачи и потребления энергоресурсов дает анализ баланса энергоресурсов. Баланс может быть составлен для любой энергоиспользующей установки, предприятия, территории, области, страны. Составление баланса энергии заключается в измерении и расчете потоков энергии по источникам и направлениям использования. Анализ баланса позволяет сопоставить полезное использование энергоресурсов и потери. Структурирование баланса обычно производится по видам используемых энергоресурсов, по энергоиспользующему оборудованию, по цехам, корпусам, производством, участкам, видам преобразованной энергии, видам продукции и т.п.
Баланс энергоресурсов в данном случае позволяет получить отчетливое представление об эффективности их использования. Так, полный коэффициент полезного использования энергоресурсов составляет.
Коэффициент использования энергоресурсов в потребительском комплексе (промышленность, транспорт, агропром, комбыт) равен.
Коэффициент полезного использования энергии в энергетическом комплексе области (электростанции и котельные) составляет.
Составление баланса энергоресурсов основывается на достоверном сборе информации о потоках энергии и их измерениях.
Вопросы для самопроверки
1. В каком виде энергия потребляется человеком?
2. Назовите стадии преобразования энергии.
3. Что измеряет коэффициент полезного действия?
4. Что представляет собой периодически действующая тепловая машина?
5. Почему у цикла Карно максимально возможный коэффициент полезного действия?
6. Какие термодинамические циклы Вам известны?
7. Что называют технологическим расходом энергии?
8. Как составить баланс энергии?
9. Как определить коэффициент использования энергоресурсов?