Главная   >>   Нетрадиционные возобновляемые источники энергии

Нетрадиционные возобновляемые источники энергии

Происхождение природных источников энергии

Мировое производство энергии стремительно растет. В 1962 г. оно уже достигло примерно 33x1015 ккал. Большую часть этого количества человечество использует для механической работы и отопления. Непрерывно возрастает количество электрической энергии, включаемой в этот процесс в качестве посредника.

Как уже говорилось, работу нельзя накапливать, таким образом, в природе не может быть "запаса работы". Нет на Земле также электрической энергии в форме, доступной для непосредственного макроскопического использования. Поэтому для покрытия энергетических потребностей общества мы вынуждены обратиться к другим источникам.

Поскольку энергию нельзя "создать" из ничего, мы вынуждены производить необходимые для нас виды энергии путем преобразования других форм, причем это превращение должно быть экономичным и возможным в широких производственных масштабах. К носителям таких видов энергии следует отнести в первую  очередь уголь (каменный и бурый), а также нефть и природный газ, применяющийся в настоящее время в промышленности в качестве топлива для двигателей, производящих механическую работу или электрическую энергию. Помимо указанных выше носителей энергии, в странах с подходящим рельефом местности довольно широко используется энергия воды ("белый уголь") и в меньшей мере ветра. В развитых странах применение мускульной энергии животных все больше и больше отходит на задний план. В настоящее время постоянно растет доля атомных электростанций в общем производстве электрической энергии. В связи со стремительным ростом потребности в энергии во всем мире предпринимаются попытки использовать в производственных целях новые источники энергии, например солнечное излучение. Предлагается, в частности, концентрировать солнечную энергию с помощью зеркал, а добытое таким образом тепло использовать для получения пара, который сможет приводить в движение турбины. Исследования в области проводников еще не дали больших результатов, но в настоящее время они уже обеспечивают возможность изготовления термо- и фотоэлементов, при помощи которых энергия теплового или светового излучения Солнца может быть превращена в электрическую энергию с КПД 10-13 %. Ученые занимаются также проблемой использования тепла Земли. Температура внутри Земли растет с глубиной. Если подвести тепло с больших глубин к поверхности земли, то можно понижая эту температуру частично превратить тепло в работу. На этом принципе уже построены геотермические электростанции. Однако на пути их более широкого распространения стоят еще не преодоленные технические трудности.

Предпринимаются также попытки использовать энергию, соответствующую разности уровней поверхности воды во время прилива и отлива.

Все эти новые источники энергии, в настоящее время покрывают весьма малую часть мирового потребления энергии. Ныне потребность в энергии удовлетворяется в основном за счет угля, нефти и прородного газа; такое положение, очевидно, сохранится и в ближайшем будущем. В связи с этим несомненный интерес представляет вопрос о происхождении энергии, накопленной в этих природных источниках.

Происхождение каменного угля

Уголь (каменный и бурый), употребляемый как горючее или топливо, в большинстве случаев залегает в земле (частично на глубине многих сотен метров). Только некоторые залежи бурого угля встречается на поверхности земли или непосредственно вблизи поверхностных слоев. Добытый уголь, кроме углерода, содержит различное количество соединений (главным образом соединений углерода с кислородом и водородом, и в меньшем количестве - с азотом, серой и другими элементами). Основными химическими элементами, входящими в состав угля, являются углерод, кислород и водород.

Бурые и каменные угли в большинстве своем имеют растительное происхождение и содержат в небольшом количестве минеральные вещества. Они образовались в теплом и сыром климате в глубокой древности из сильно разросшихся растений, когда они после гибели погружались на дно водоемов и поэтому не подвергались тлению и горению, при которых содержащийся в растениях углерод большей частью превращается в углекислый газ и другие летучие вещества. В процессах разложения этих растений (главным образом tj||| под воздействием микроорганизмов) вИЙ из них высвобождаются соединения, богатые водородом и кислородом, а содержание углерода растет - образуется торф. Торф затем покрывается другими отложениями (песком, глиной) и в результате геологических, движений опускается в глубь земли, где под давлением и при высокой температуре процесс торфооб-разования переходит в процесс угле-образования (повышение содержания углерода). В ходе связанной с этим процессом миграции элементов содержание водорода и кислорода продолжает уменьшаться, а содержание углерода - расти; в результате из торфа получаются бурый уголь, каменный уголь и, наконец, антрацит. Бурые угли образуются в течение 40-60 миллионов лет

Происхождение нефти и природного газа

Нефть и природный газ состоят главным образом из углеводородов (соединений углерода и водорода), а также в небольшом количестве из других элементов (серы, азота, кислорода и т.д.). Нефть содержит 82-87 % углерода и 11-14 % водорода. По вопросу происхождения нефти существуют различные точки зрения. Наиболее признанной является теория, согласно которой газ и нефть состоят из органических веществ, главным образом животного происхождения (некоторые ученые полагают, что нефть и газ во многих случаях образовались в глубинах земли в результате действия воды на карбиды металлов). Живые организмы, погибшие и опустившиеся на морское дно, попадают в такие условия, где они не могут ни распадаться в результате окисления, ни уничтожаться микроорганизмами, а вследствие отсутствия контакта с воздухом образуют илистые осадки. В результате геологических движений эти осадки проникают на большие глубины. Там под влиянием давления и высокой температуры, а возможно, и под воздействием микроорганизмов в течение миллионов лет проходит процесс сухой возгонки, при котором содержащийся в осадках углерод в большей своей части переходит в углеводородные соединения, в то время как большая часть кислорода и других элементов мигрирует. Жидкая субстанция, состоящая главным образом из смеси различных по молекулярному весу углеводородов, может и самостоятельно мигрировать, проникая через поры и трещины земных недр. Основными составными частями природного газа являются низкомолекулярные углеводороды (прежде всего метан и этан), нефть же представляет собой высокомолекулярные углеводороды.

Названия каменный уголь, нефть, указывающие на их происхождение из неживого материала (геологическое, а не биологическое), оправданы только отчасти. В действительности эти продукты образовались из веществ, возникших в результате жизнедеятельности животных и растений, и поэтому имеют биологическое происхождение. Однако те превращения, которые привели к образованию из животных и растительных организмов каменного угля, нефти и газа, в большинстве своем не носят биологического характера, а являются следствием геологических и геохимических условий (давление, температура и т.д.), создавшихся в окружающей неживой среде. Известны и другие минералы, которые представляют собой продукты превращений биологических веществ (например мел).

Происхождение энергии угля, нефти и природного газа

Таким образом, основные природные источники энергии имеют биологическое происхождение и содержат главным образом углерод. В связи с этим естественно возникают различные вопросы. Откуда берется энергия у живых существ?  Какую роль играет углерод в энергоносителях ? Как происходит накопление энергии в них и ее последующее превращение в тепло или работу? Глубоко не вдаваясь в подробности биологических процессов, можно сказать, что в развитии живого мира решающую роль играют растения. Известно, что растения могут существовать без животных, а животные без растений нет. Значительная часть животных поедает растения, остальные (плотоядные) питаются мясом травоядных (это относится также к человеку). Таким образом, косвенно, они добывают свою пищу также из растительного мира; последний служит не только материалом для строительства тканей тела, но и дает необходимую им энергию. Итак, чтобы узнать происхождение энергии у живых организмов, достаточно исследовать вопрос о происхождении энергии, аккумулированной в растениях.

Вопрос о происхождении вещества, из которых строятся растительные организмы, составляет предмет научного спора уже в течение столетий, поскольку процесс питания растений (в отличие от животных) не поддается непосредственному наблюдению. Только в XIX столетии было окончательно установлено, что растения строят свои организмы-из атмосферного углекислого газа, всасываемой из почвы воды, а также азота, фосфора, серы, калия и других элементов, входящих-в состав неорганических веществ, которыми питаются растения. Углекислый газ и вода, служащие основным питанием растений,- очень простые, энергетически бедные соединения, характеризующиеся низкой химической активностью, тогда как основные соединения растительного (а также животного) происхождения имеют, как правило, очень сложный состав, высокое энергетическое содержание и, при определенных условиях, относительно большую химическую активность. Таким образом, естественно предположить, что построение растительных организмов из природного "сырья" должно происходить под воздействием некоего мощного источника энергии, которая может быть превращена в химическую энергию сложных соединений. Только во второй половине XIX столетия было точно установлено, что источником этой энергии является Солнце (его световая энергия).

Энергия солнечного излучения., ежегодно достигающая Земли, равна 1021 ккал. Большая ее часть превращается в тепло или снова отражается в мировое пространство.

Незначительную часть (сотые доли процента), однако, потребляют растения и с помощью хлорофилла, содержащегося в их зеленых частях, в процессе фотосинтеза строят из углекислого газа, воды и других энергетически бедных веществ сахар, крахмал, глюкозу, протеин, нуклеиновые кислоты, алкалоиды и другие энергетически богатые и сложные по составу соединения. В общих чертах это совершается следующим образом: с помощью поглощаемой хлорофиллом световой энергии химические связи в углекислом газе, воде и других питательных веществах ослабляются или разрываются, временно образуются богатые энергией атомы и радикалы, из которых в ходе различных химических процессов возникают вещества со все более сложными молекулами. Многочисленные атомы связаны в них друг с другом большим числом различных химических связей. Солнечная энергия аккумулируется, таким образом, в виде химической энергии. Схематически реакцию фотосинтеза можно наглядно показать на процессе образования 1 моля глюкозы:

6СО2 + бШО + 674 ккал -> CeffizOs + 6O2.

При фотосинтезе освобождается кислород. Реакции с образованием кислорода называются восстановительными.

Следовательно, живые организмы черпают свою химическую энергию из энергии излучения Солнца. Концентрация солнечной энергии происходит главным образом в углеводах: (соединения состоящие из углерода, водорода и кислорода) глюкоза (СсШгОс), свекловичный сахар (CuHjzO11)i крахмал и целюлоза (CeHioOsJn, где n-переменная величина. В дальнейшем часть углеводов окисляется, при этом, например, из 1моля глюкозы образуются углекислый газ и вода в соответствии со следующей химической реакцией:

СбНпОв + 6О2 -> бСОг + бВЬО + 674 ккал.

Энергия, освобождающаяся при этом из углеводов, идет на построение необходимых для функционирования организма еще более сложных и энергетически богатых соединений (жиров, протеинов, нуклеиновых кислот, алкалоидов и т.д.).Часть этих веществ (прежде всего жиры) окисляется, выделяющаяся при этом энергия концентрируется в организме и идет на покрытие его энергетических потребностей;

В результате окисления сложные органические соединения, полученные в процессе фотосинтеза, снова превращаются в исходные энергетически бедные вещества - углекислый газ и воду. В конечном счете весь растительный организм либо отмирает, либо становится кормом для животных (или людей). Соединения в отмершем организме начинают распадаться и под воздействием микроорганизмов окисляться.

Круговорот углерода, водорода и кислорода

Углерод, водород и кислород совершают, таким образом, круговорот в природе: из энергетически бедных углеродных соединений в живых организмах под воздействием солнечной энергии образуется энергетически более богатые органические соединения, при этом освобождается кислород; затем в ходе длинного ряда сложных превращений при поглощении кислорода вновь образуется углекислый газ и вода и т.д.

Циклический характер химии живого мира, т.е. то обстоятельство, что при распаде снова образуются исходные продукты ("сырье"), чрезвычайно важен, так как в результате этого сырьевой баланс живых организмов никогда не может быть нарушен. Если бы, например? микробы не разлагали отмершие организмы, то жизнь на Земле не могла бы долго продолжаться, так как в этом случае имеющийся в нашем распоряжении запас углерода "за короткий срок" (с геологической точки зрения) осел бы в отмерших организмах. Не следует забывать, что изученная часть Земли (земная кора и воздух) содержит лишь 0,09% углерода.

В течение своего "нормального" круговорота углерод задерживается в живых организмах относительно короткое время (самое большое - несколько сотен лет). Уже здесь он может быть использован: древесина и остальные части растений также являются энергоносителями, используемыми людьми с древнейших времен. С ростом потребности общества в энергии дерево уже не могло больше удовлетворить этой потребности, а стремительное уменьшение лесных массивов привело к настоятельной необходимости использовать вместо дерева другие источники энергии. В XIX столетии быстро возрасло значение каменного угля как источника энергии. Уголь начали добывать уже с ХШ века, но до XIX века его в основном использовали лишь для отопления.

Нарушение круговорота

Каменный уголь фактически образовался вследствие нарушения естественного круговорота углерода, когда распад сложных углеродных соединений живых организмов не дошел до самого низкого энергетического состояния (до углекислого газа), а остановился на промежуточной ступени. Для беспрепятственного круговорота углерода, т.е. полного завершения процесса распада, необходимо столькд кислорода, сколько можно выделить из воздуха. Если же в ходе процесса распада органические вещества были по каким-либо причинам геологического характера лишены доступа воздуха, то течение его изменялось - он значительно замедлялся. В этих условиях вследствие недостатка кислорода окислительные процессы уступали место восстановительным, продукты которых во многом зависят- от физических и химических условий превращения (давление, температура, микроорганизмы и т.д.). При образовании нефти и газа из соединений органического происхождения, состоящих главным образом из углерода, в первую очередь возникают углеводороды, в то время как в ходе образования угля из большей части веществ погибших организмов углерод высвобождается. Как углеводороды, так и элементарный углерод содержат больше химической энергии, чем углекислый газ, поэтому они сжигаются (соединяются с кислородом) с выделением тепла и при этом образуется более бедный энергией углекислый газ:

СН4 + 2О2 -> СО2 + 2Н2О + 210,8 ккал,

СзН8 + 5О2  -> ЗСОг + 4ШО + 526,3 ккал,

С + О2  -» СОг + 94,3 ккал.

Углекислый газ несгораем, он не может при соединении с воздухом (кислородом) высвобождать энергию.

Какое состояние вещества наиболее стабильно?

На первый взгляд может показаться неожиданным, что элементарная форма углерода энергетически не самая бедная, не самая стабильная. Следует отметить, что наиболее стабильными являются такие состояния веществ, при которых в данных условиях их энергия имеет наименьшее значение,

Рассмотрим пример из механики. Пусть в комнате на четвертом этаже шар находится в- устойчивом положении тогда, когда он лежит на полу. На столе или на шкафу состояние шара менее устойчиво: отсюда он может "сам по себе" (без подвода энергии) упасть на пол, причем его потенциальная энергия превращается в кинетическую, а затем при ударе об пол - в тепловую и звуковую. В обратном направлении это процесс "сам по себе" идти не может. Перенести шар на стол или шкаф возможно лишь при затрате определенной энергии. На полу (при условии, что он ровный и строго горизонтальный) шар сам по себе не будет перемещаться, его состояние стабильно. Однако эта стабильность относительна и не означает, что шар больше не обладает потенциальной энергией - ведь он: находится на значительной высотё'над землей. В данном случае имеет место только относительный минимум энергии. При изменении условий может произойти дальнейшее высвобождение потенциальной энергии. Например, если на полу окажется дыра, то шар упадет на этаж ниже, если и здесь будет дыра, то он упадет еще ниже и т.д. Он может достичь таким образом первого этажа, при этом потенциальная энергия шара переходит в другие виды. Стабильность шара даже на первом этаже не абсолютна. При соответствующих условиях он может упасть в подвал или достичь дна глубокой шахты и т.д.

Аналогичная картина наблюдается при превращениях природных энергоносителей, содержащих углерод. В углеродных соединениях органического происхождения накоплено много химической энергии. В ходе химических превращений эта энергия может частично высвобождаться и, будучи преобразованной в другие виды, использоваться. Сами по себе происходят только такие химические превращения, которые связаны с уменьшением свободной энергии, и только они могут быть использованы для получения энергии. Содержание энергии в веществах, образовавшихся в процессе превращения, меньше, чем в исходном веществе, как раз на количество освободившейся энергии. Химические превращения в зависимости от условий происходят быстро или медленно (иногда даже миллионы лет) и идут до тех пор, пока не образуются продукты, энергия которых при данных условиях уже не может уменьшаться (такие продукты будут стабильны).

Если окисление углеродных соединений происходит при наличии достаточного количества воздуха, то возникают соединения, все более богатые кислородом, пока, наконец, углерод не предстанет в форме углекислого газа, а водород - в форме воды. Эти соединения не могут далее окисляться, и из них при обычных условиях не высвобождается химическая энергия. СОг и НгО в естественных условиях предстайляют собой стабильное состояние углерода и водорода. Таким образом, газ и вода -это самые стабильные конечные продукты, которые могут быть превращены в другие вещества только с помощью дополнительной энергии иного происхождения (например солнечной или электрической).

Аккумуляция солнечной энергии

Отдельные.периоды круговорота углерода в природе (образование энергетически богатых углеродных соединений из углекислого газа и воды и их последующий распад на те же соединения) имеют продолжительность от нескольких месяцев до нескольких столетий. Если же обычные условия меняются (как это произошло, например, при образовании нефти, газа и угля), процессы превращения могут протекать исключительно медленно, в течение миллионов лет.

В земной коре без доступа воздуха углеводороды и уголь относительно стабильны, и часть химической энергии в них еще сохранилась в неизменном виде: они как бы законсервировали солнечную энергию. Здесь очевидна аналогия с рассмотренным выше примером с шаром. При изменении условий (извлечении нефти, угля или газа на поверхность земли и их использовании) стабильность состояния этих веществ нарушается: при сгорании они соединяются с кислородом, образуя углекислый газ и воду. На этом круговорот углерода и водорода, нормальный ход которого по геологическим причинам задержался на миллионы лет, быстро заканчивается. При сжиганий освобождается энергия солнечного излучения, которую растения долгое время хранили в себе. Таким образом, нефть, природный газ и каменный уголь - это законсервированная энергия, являющаяся частью когда-то поглащенной солнечной энергии.

Происхождение энергии воды и ветра

Известно, что гидростанции потребляют ту потенциальную энергию воды в реках и водопадах, которая освобождается благодаря естественному перепаду высот. Но вода в своем вечном круговороте попадает на возвышенные участки земли в результате испарения мерей, рек и озер, которое происходит в первую очередь под действием солнечного излучения. Пар, превращаясь в капли воды, собирается в облака или тучи, откуда вода в виде дождя вдш снега попадает обратно на землю, » том числе и на возвышенности. Скапливающаяся здесь вода обладает большим запасом потенциальной энергии, которая затем при помощи турбин,приведенных в действие естественными или искусственно созданными водопадами, может быть превращена в электрическую энергию или механическую работу. Таким образом, большая часть энергии, полученной на гидростанциях, также обязана своим происхождением солнечному излучению. Только незначительная часть энергии, потребляемой при испарении различных , водоемов,- это тепло Земли, которое в свою очередь, освобождается в результате происходящих внутри Земли процессов, радиоактивного распада.

Энергия ветра также в значительной степени обязана своим происхождением Солнцу: разница в нагреве отдельных областей земной поверхности вызывает атмосферные течения (т.е. ветер).

Хорошо ли используется солнечная энергия?

Как мы уже убедились, большая часть нашей потребности в энергии покрывается за счет солнечной энергии. Но к сожалению, живая природа использует эту солнечную энергию недостаточно эффективно.

Солнце излучает ежегодно огромное количество энергии, равное ~ Зх1030ккал, из нее Земли достигает около 1021 ккал. Примерно 60% энергии поглощается воздухом (2,5% ее превращается в энергию ветра); 25,5% достигает водной поверхности, но из этого количества только 0,04% передается воде; очень незначительную часть потребляют водные растения; 14,5% энергии солнечного излучения достигает суши и только 0,12 % ее благодаря растениям превращается в химическую энергию. "Неиспользованная" энергия солнечного излучения Земли переходит обратно в мировое пространство. Земля отдает больше энергии, чем получает от Солнца, так как она излучает еще и энергию, освобождающуюся в результате радиоактивных процессов, происходящих в ее недрах.

Таким образом, растительный и животный мир, включая человека, использует совершенно ничтожную долю солнечной энергии, прпадаю-щей на Землю. Задача будущего - найти и разработать средства и методы, которые помогут человеку более полно использовать эту энергию.

Глубокое проникновение в тайны природы, по-видимому, поможет открыть принципиально новые возможности в этой области.

Один из методов более эффективного использования солнечной энергии, требующий дальнейшей теоретической разработки,-это интенсификация сельского хозяйства за счет лучшей обработки почвы и внесения искусственных удобрений, а также культивирования таких растений, которые более рационально используют эту энергию. Другой метод -создание термо- и фотоэлементов, где происходит непосредственное превращение солнечной энергии в электрическую.

Запасы природных источников энергии

Углерод (как энергоноситель) распределяется на Земле следующим образом: в атмосфере его содержится 640 млрд.т в виде углекислого газа, при этом около 150 млрд.т ежегодно потребляются растениями в процессе фотосинтеза; в растительных организмахзапасено 500 млрд.т, а в животных - 5 млрд.т углерода. Большая часть углерода, содержащегося в живых организмах, после окисления снова поступает в атмосферу в виде углекислого газа. Углерод, не участвующий в окислительных процессах, накоплен в недрах земли в виде торфа (~1000 млрд.т), угля (~ 10000 млрд.т), нефга(~ 20 млрд.т).

Образование нефти, газа и угля - процесс, длившийся много миллионов лет в специфических условиях, которых нет в настоящее время, поэтому в ближайшем будущем нельзя рассчитывать на появление новых месторождений.

Из запасов угля, составляющих около 10000 млрд.т, человечество на сегодняшний день использовало приблизительно 60-70 млрд.т. В настоящее время ежегодная потребность составляет больше 2 млрд.т. Это незначительный расход по сравнению с имеющимися запасами. Такое же положение и с нефтью. Кроме того, благодаря применению новейших методов геологоразведки открываются новые месторождения, однако все они не неисчерпаемы и распоряжаться ими следует разумно. Нужно также учесть, что нефть, природный газ и уголь являются не только источниками энергии, но и важнейшим сырьем для химической промышленности. Из них получают исходные продукты для предприятия органической химии, они служат сырьем для производства искусственных удобрений и взрывчатых веществ, поскольку водород, необходимый для получения аммиака Nffi, основного исходного продукта этих отраслей промышленности, экономичнее всего получать из нефти или газа. Поэтому важнейшей задачей научных и прикладных исследований является разработка новых методов получения энергии, что позволит передать нефть и газ химической промышленности.

Итак, почти во всех природных источниках энергии в основном запасена энергия Солнца. Можно сказать, что в настоящее время каждая электростанция-или двигатель питаются фактически ею. Исключением являются атомные электростанции, однако в общем производстве электроэнергии они пока играют ничтожную роль. Но и атомная энергия косвенным образом связана с солнечным излучением, так как образование урана, как и других химических элементов, связано с Солнцем, с возникновением Солнечной системы.



Швейная машина pfaff hobby 1142 купить швейную машину pfaff.